Abstract
In this talk methods for a rigorous control of the renormalization group (RG) flow of field theories are discussed. The RG equations involve the flow of an infinite number of local partition functions. By the method of exact beta-function the RG equations are reduced to flow equations of a finite number of coupling constants. Generating functions of Greens functions are expressed by polymer activities. Polymer activities are useful for solving the large volume and large field problem in field theory. The RG flow of the polymer activities is studied by the introduction of polymer algebras. The definition of products and recursive functions replaces cluster expansion techniques. Norms of these products and recursive functions are basic tools and simplify a RG analysis for field theories. The methods will be discussed at examples of the $\Phi^4$-model, the $O(N)$ $\sigma$-model and hierarchical scalar field theory (infrared fixed points).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.