Abstract

First recordings of satellite ELF/VLF waveform data associated with transient luminous event (TLE) observations are reported from the summer 2005 campaign coordinated by Stanford University and Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPCE). TLEs are optically observed from the U.S. Langmuir Laboratory, while ELF/VLF waveform data are simultaneously recorded on board the Centre National d'Etudes Spatiales microsatellite DEMETER and on the ground at Langmuir. Analyses of ELF/VLF measurements associated with sprite events observed on 28 July 2005 and 3 August 2005 are presented. Conditions to trace back the wave emissions from the satellite to the source region of the parent lightning discharge are discussed. The main results concern: (1) the identification from a low Earth orbit satellite of the 0+ whistler signatures of the TLE causative lightning; (2) the identification of the propagation characteristics of proton whistlers triggered by the 0+ whistlers of the causative lightning, and the potential use of those characteristics; (3) recognition of the difficulty to observe sprite‐produced ELF bursts in the presence of proton‐whistlers; (4) the use of geographical displays of the average power received by the DEMETER electric field antennas over the U.S. Navy transmitter North West Cape (NWC) located in Western Australia to evaluate VLF transmission cones which explain the presence (28 July events) or the absence (3 August events) of propagation links between sferics observed at ground and 0+ whistlers observed on DEMETER; and (5) owing to electron‐collisions, an optimum transfer of energy from the atmosphere to the ionosphere for waves with k vectors antiparallel, or quasi‐antiparallel, to Earth's magnetic field direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.