Abstract

Methodical aspects of the reliability-based structural optimisation using stochastic quasigradient methods are considered. For an example of the simply supported reinforced concrete beam, the employment of the Lagrange multiplier method that belongs to the class of stochastic quasigradient methods is demonstrated. The classical optimum design goal to minimise structural cost or weight under the constraint on the structural failure probability is taken for consideration. Optimisation problems solved with the Lagrangemultiplier method are formulated in form of general stochastic programming problem. The mathematical expectation of the concrete volume reduced with respect to the in-place cost of the beam materials is taken as the objective function. Constraint function is the limitation placed on the beam failure probability. The beam is considered as a series structural system. Values of the prescribed allowable failure probability belongs to the interval in which the estimation of the failure probabilities by the simple Monte-Carlomethod is possible with an acceptable confidence. The time-independent case as well as the time-dependent one is considered in the optimisation problems. The generalisation on the time-dependent case is undertaken through the introduction into the constraint function of the quasi-linear distribution law of the random variables. In the time-dependent case, the objective function is associated with beginning and the constraint function with end of the service period. An expression of the stochastic gradient based on the differentiation under the integral sign is used for calculations with the Lagrange multiplier method. The stochastic gradient used is computationally more effective in comparison with stochastic finite-difference formulae usual in stochastic quasigradient methods because it requires only one computation of the structure in search iteration of the optimisation process. Three rules based on statistical argumentation are used for the stopping of the seat according to the procedure of the Lagrange multiplier method. The optimising of the beam shows that the Lagrange multiplier method is applicable for the optimal design of structures in that cases when the structural reliability can be estimated by means of the simple Monte-Carlo method. Additional research is needed for integration in the Lagrange multiplier method of statistical simulation techniques for the estimation of small structural failure probabilities.

Highlights

  • the employment of the Lagrange multiplier method that belongs to the class of stochastic quasigradient methods is demonstrated

  • The classical optimum design goal to minimise structural cost or weight under the constraint on the structural failure probability is taken for consideration

  • Optunisation problems solved with the Lagrange multiplier method are formulated in form

Read more

Summary

Einfiibrung

Viele wahrscheinlichkeitstheoretische Probleme. die sowohl bei der Analyse als auch bei der Optimierung von Tragwerken entstehen, konnen am besten mit Hilfe der Monte-Carlo-Methode, d.h. mit statistischen Mitteln, gelost werden. Die sowohl bei der Analyse als auch bei der Optimierung von Tragwerken entstehen, konnen am besten mit Hilfe der Monte-Carlo-Methode, d.h. mit statistischen Mitteln, gelost werden. Das wichtigste von ihnen ist die Berechnung der Versagenswahrscheinlichkeit eines Tragwerkes. Die Berechnung der Versagenswahrscheinlichkeit wird auf ein Problem der Integration uber einem mehrdimensionalen Raum zuruckgefiihrt. Da die LOsung dieses Problems mit der Monte-Carlo-Methode theorisch sehr einfach ist. Das allgemeine Schema der zuverlassigkeitstheoretisch gesrutzten Optimierung eines Tragwerkes schliefit mehrfache Durchfiihrung seiner Analyse und in erster Linie mehrfache Berechnung seiner Versagenswahrscheinlichkeit ein. Eine exzellente Moglichkeit, die Monte-Carlo-Methode in der zuverlassigkeitstheoretisch gesrutzten Tragwerksoptimierung rationell auszunutzen, bieten Verfahren der stochastischen Quasigradienten. Man kann mit ihrer Hilfe Probleme der Tragwerksoptimierung losen, wenn sie in Form von Aufgaben der stochastischen Programmierung formuliert werden. Minimierung von Baukosten (oder Gewicht) eines Tragwerkes unter Einschrankung seiner Zuverlassigkeit, formuliert und gelost

Systemzuverliissigkeit
Aufgabenstellungen
Optimierungsverfahren
FlieBgrenze der
Optimierungsdurchfiihrung
Optimierungsergebnisse
Zusammenfassung und Schlu8folgerungen
Summary

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.