Abstract

A transduction, in the sense of this paper, is a n-ary word relation (which may be a function) describable by a finite directed labeled graph. The notion of n-ary transduction is co-extensive with the Kleenean closure of finite n-ary relations. The 1-ary transductions are exactly the sets recognizable by finite automata. However, for n > 1 the relations recognizable by automata constitute a proper subclass of the n-ary transductions. The 2-ary length-preserving transductions constitute the equilibrium (potential) behavior of 1-dimensional, bilateral iterative networks. The immediate consequence relation of various primitive deductive (respectively computational) systems, such as Post normal systems (respectively Turing machines) are examples of transductions. Other riches deductive systems have immediate consequence relations which are not transductions. The closure properties of the class of transductions are studied. The decomposition of transductions into simpler ones is also studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.