Abstract

In this paper we prove a stronger version of a result of Ralph Reid characterizing the ternary matroids (i.e., the matroids representable over the field of 3 elements, GF(3)). In particular, we prove that a matroid is ternary if it has no seriesminor of type L n for n ≥ 5 ( n cells and n circuits, each of size n − 1), and no series-minor of type L 5 ∗ (dual of L 5), BII (Fano matroid) or BI (dual of type BII). The proof we give does not assume Reid's theorem. Rather we give a direct proof based on the methods (notably the homotopy theorem) developed by Tutte for proving his characterization of regular matroids. Indeed, the steps involved in our proof closely parallel Tutte's proof, but carrying out these steps now becomes much more complicated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.