Abstract

In this work, some regularity properties of mild solutions for a class of stochastic linear functional differential equations driven by infinite-dimensional Wiener processes are considered. In terms of retarded fundamental solutions, we introduce a class of stochastic convolutions which naturally arise in the solutions and investigate their Yosida approximants. By means of the retarded fundamental solutions, we find conditions under which each mild solution permits a continuous modification. With the aid of Yosida approximation, we study two kinds of regularity properties, temporal and spatial ones, for the retarded solution processes. By employing a factorization method, we establish a retarded version of the Burkholder–Davis–Gundy inequality for stochastic convolutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.