Abstract
We study the tail behavior of regularly varying infinitely divisible random vectors and additive processes, i.e. stochastic processes with independent but not necessarily stationary increments. We show that the distribution of an infinitely divisible random vector is tail equivalent to its Lévy measure and we study the asymptotic decay of the probability for an additive process to hit sets far away from the origin. The results are extensions of known univariate results to the multivariate setting; we exemplify some of the difficulties that arise in the multivariate case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.