Abstract
LetXbe an abstract set andLa lattice of subsets ofX.I(L)denotes the non-trivial zero one valued finitely additive measures onA(L), the algebra generated byL, andIR(L)those elements ofI(L)that areL-regular. It is known thatI(L)=IR(L)if and only ifLis an algebra. We first give several new proofs of this fact and a number of characterizations of this in topologicial terms.Next we consider,I(σ*,L)the elements ofI(L)that areσ-smooth onL, andIR(σ,L)those elements ofI(σ*,L)that areL-regular. We then obtain necessary and sufficent conditions forI(σ*,L)=IR(σ,L), and in particuliar ,we obtain conditions in terms of topologicial demands on associated Wallman spaces of the lattice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Mathematics and Mathematical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.