Abstract
Predictive modeling using fundamental physical principles is critical to developing new Thermal Interface Materials (TIMs) since it can be used to quantify the effect of particle volume fraction and arrangements on the effective thermal conductivity. In our prior work, we described a Random Network Model (RNM) [2] that can efficiently capture the near-percolation transport in these particle-filled systems, taking into account the inter-particle interactions and random size distributions. The accuracy of the RNM is dependent on the parameters inherent in analytical description of thermal transport between two spherical particles, and their numerical approximation into a network model. In the present study, based on a finite element analysis, the network model is improved by developing an approximation of the critical cylindrical region between two spherical particles over which energy is transported. Taking the finite element (FE) results (generated by COMSOL™) as a reference, this critical parameter demonstrated a much larger effect on the thermal conductance of a single cell than other parameters (thermal conductivity ratio of fillers and matrix, ratio of radii of two neighboring particles and distance between two neighboring particles). Thirty different microstructures were generated using COMSOL™ at volume fractions of 40%, 50%, 58% and 70% respectively. Comparing RNM results with FE results and experimental data, a linear relationship of the critical parameter and the volume fraction was found that provides a more accurate prediction of the effective thermal conductivity of the particulate thermal interface material for a given volume fraction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.