Abstract

Carbon-doping is proposed to reduce the dislocation-mediated leakage currents in the GaN buffer layers. GaN:C grown by metalorganic vapor phase epitaxy using propane shows excellent quality up to [C] = 6.7 × 1018 cm−3. Locally probing dislocations by surface scanning potential microscopy reveal a transition from mostly neutral or weakly charged regions to dominantly negatively charged regions relative to the surrounding area at high doping levels. A relation between leakage currents and the relative dislocation charge state exists. Minimum leakage current is achieved if the dominant charge state of dislocation regions becomes negative against the surrounding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.