Abstract

We consider the problem of reconstructing a function from linear binary measurements. That is, the samples of the function are given by inner products with functions taking only the values 0 and 1. We consider three particular methods for this problem, the parameterized-background data-weak (PBDW) method, generalized sampling and infinite-dimensional compressed sensing. The first two methods are dependent on knowing the stable sampling rate when considering samples by Walsh function and wavelet reconstruction. We establish linearity of the stable sampling rate, which is sharp, allowing for optimal use of these methods. In addition, we provide recovery guaranties for infinite-dimensional compressed sensing with Walsh functions and wavelets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.