Abstract
Theory of dynamical systems in fields of p-adic numbers is an important part of algebraic and arithmetic dynamics. The study of p-adic dynamical systems is motivated by their applications in various areas of mathematics, physics, genetics, biology, cognitive science, neurophysiology, computer science, cryptology, etc. In particular, p-adic dynamical systems found applications in cryptography, which stimulated the interest to nonsmooth dynamical maps. An important class of (in general) nonsmooth maps is given by 1-Lipschitz functions. In this paper we present a recent summary of results about the class of 1-Lipschitz functions and describe measure-preserving (for the Haar measure on the ring of p-adic integers) and ergodic functions. The main mathematical tool used in this work is the representation of the function by the van der Put series which is actively used in p-adic analysis. The van der Put basis differs fundamentally from previously used ones (for example, the monomial and Mahler basis) which are related to the algebraic structure of p-adic fields. The basic point in the construction of van der Put basis is the continuity of the characteristic function of a p-adic ball. Also we use an algebraic structure (permutations) induced by coordinate functions with partially frozen variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: P-Adic Numbers, Ultrametric Analysis, and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.