Abstract
Population dynamics with demographic variability is frequently studied using discrete random variables with continuous-time Markov chain (CTMC) models. An approximation of a CTMC model using continuous random variables can be derived in a straightforward manner by applying standard methods based on the reaction rates in the CTMC model. This leads to a system of Itô stochastic differential equations (SDEs) which generally have the form [Formula: see text] where [Formula: see text] is the population vector of random variables, [Formula: see text] is the drift vector, and G is the diffusion matrix. In some problems, the derived SDE model may not have real-valued or nonnegative solutions for all time. For such problems, the SDE model may be declared infeasible. In this investigation, new systems of SDEs are derived with real-valued solutions and with nonnegative solutions. To derive real-valued SDE models, reaction rates are assumed to be nonnegative for all time with negative reaction rates assigned probability zero. This biologically realistic assumption leads to the derivation of real-valued SDE population models. However, small but negative values may still arise for a real-valued SDE model. This is due to the magnitudes of certain problem-dependent diffusion coefficients when population sizes are near zero. A slight modification of the diffusion coefficients when population sizes are near zero ensures that a real-valued SDE model has a nonnegative solution, yet maintains the integrity of the SDE model when sizes are not near zero. Several population dynamic problems are examined to illustrate the methodology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.