Abstract
AbstractTwo projective nonsingular complex algebraic curves X and Y defined over the field R of real numbers can be isomorphic while their sets X(R) and Y(R) of R-rational points could be even non homeomorphic. This leads to the count of the number of real forms of a complex algebraic curve X, that is, those nonisomorphic real algebraic curves whose complexifications are isomorphic to X. In this paper we compute, as a function of genus, the maximum number of such real forms that a complex algebraic curve admits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.