Abstract

We present a characterisation of all quartic polynomials with exactly three distinct roots and the property that it and all its derivatives have rational roots. It turns out that there are an infinite number of distinct such quartics, each of which corresponds to a point on a related elliptic curve. Furthermore the collection of these points forms a proper subgroup of the group of rational points on the curve.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.