Abstract

Доказывается, что для наименьших равномер ных рациональных уклоне нийRn(f) выпуклой на [0,1] функции с модулем непрерывно сти, не превосходящемω(δ), сп раведлива оценка $$R_n (f) \leqq c\frac{{\ln ^2 n}}{{n^2 }}\mathop {\max }\limits_{e^{ - n} \leqq \theta< 1} \left\{ {\omega (\theta )\ln \frac{1}{\theta }} \right\},$$ гдес — абсолютная по стоянная.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.