Abstract

In this paper we discuss the issue of solving stochastic optimization problems by means of sample average approximations. Our focus is on rates of convergence of estimators of optimal solutions and optimal values with respect to the sample size. This is a well studied problem in case the samples are independent and identically distributed (i.e., when standard Monte Carlo is used); here, we study the case where that assumption is dropped. Broadly speaking, our results show that, under appropriate assumptions, the rates of convergence for pointwise estimators under a sampling scheme carry over to the optimization case, in the sense that convergence of approximating optimal solutions and optimal values to their true counterparts has the same rates as in pointwise estimation. Our motivation for the study arises from two types of sampling methods that have been widely used in the Statistics literature. One is Latin Hypercube Sampling (LHS), a stratifled sampling method originally proposed in the seventies by McKay, Beckman, and Conover (1979). The other is the class of quasi-Monte Carlo (QMC) methods, which have become popular especially after the work of Niederreiter (1992). The advantage of such methods is that they typically yield pointwise estimators which not only have lower variance than standard Monte Carlo but also possess better rates of convergence. Thus, it is important to study the use of these techniques in samplingbased optimization. The novelty of our work arises from the fact that, while there has been some work on the use of variance reduction techniques and QMC methods in stochastic optimization, none of the existing work | to the best of our knowledge | has provided a theoretical study on the efiect of these techniques on rates of convergence for the optimization problem. We present numerical results for some two-stage stochastic programs from the literature to illustrate the discussed ideas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.