Abstract

Grain and pore kinematics are important features of the response of granular materials to impact loading and rapid compaction. These kinematics and the associated material-phase stresses control solidification processes in shock-driven manufacturing and ignition in energetic materials. Diagnostics used in traditional gas-gun experiments cannot resolve spatially-heterogeneous grain and pore kinematics during granular compaction. Similarly, continuum models of the granular compaction process do not account for this spatial heterogeneity, making predictions of solidification or ignition challenging. Here, we propose a method of accessing spatially-heterogeneous grain and pore behaviors during rapid compaction which involves x-ray tomography, in-situ x-ray phase contrast imaging, and mesoscale numerical modeling. We use this method to study heterogeneous grain and pore kinematics and local stresses in a ductile aluminum powder impacted at velocities up to 800 m/s. We first validate the mesoscale model by comparing its predictions with x-ray measurements from an impact experiment on a sample that was used to generate a numerical microstructure. We then quantify the evolution of variables such as 3D pore sizes and local stresses. We comment on the role of microstructure on the granular material’s response and the sensitivity of the material response to changes in structure, impact velocity, and sample size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call