Abstract
Program termination is a fundamental research topic in program analysis. In this paper, we present a new complete polynomial-time method for the existence problem of linear ranking functions for single-path loops described by a conjunction of linear constraints, when variables range over the reals (or rationals). Unlike existing methods, our method does not depend on Farkas’ Lemma and provides us with counterexamples to existence of linear ranking functions, when no linear ranking function exists. In addition, we extend our results established over the rationals to the setting of the integers. This deduces an alternative approach to deciding whether or not a given SLC loop has a linear ranking function over the integers. Finally, we prove that the termination of bounded single-path linear-constraint loops is decidable over the reals (or rationals).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Software Tools for Technology Transfer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.