Abstract
In this paper we shall consider certain rank 3 permutation groups G which act on a set Ω of size n. Thus a point stabiliser Gα will have 3 orbits { α }, △ (α), Γ (α) of sizes 1, k, I respectively. It is well known that, if |G| is even, then the orbital △ defines a strongly regular graph on Ω. In this graph, every point has valency k, every pair of adjacent points are adjacent to a constant number λ of common points, and every pair of non-adjacent points are adjacent to a constant number μ of common points. This notation is reasonably standard (see [4], where much background theory is given).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.