Abstract
Let $P$ be a set of $n$ points in $\mathbb{R}^d$. We present a linear-size data structure for answering range queries on $P$ with constant-complexity semialgebraic sets as ranges, in time close to $O(n^{1-1/d})$. It essentially matches the performance of similar structures for simplex range searching, and, for $d\ge 5$, significantly improves earlier solutions by the first two authors obtained in 1994. This almost settles a long-standing open problem in range searching. The data structure is based on a partitioning technique of Guth and Katz [On the Erdös distinct distances problem in the plane, arXiv:1011.4105, 2010], which shows that for a parameter $r$, $1 < r \le n$, there exists a $d$-variate polynomial $f$ of degree $O(r^{1/d})$ such that each connected component of $\mathbb{R}^d\setminus Z(f)$ contains at most $n/r$ points of $P$, where $Z(f)$ is the zero set of $f$. We present an efficient randomized algorithm for computing such a polynomial partition, which is of independent interest and is likely to have additional applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.