Abstract
For linear random dynamical systems in a separable Banach space X, we derived a series of Krein–Rutman type Theorems with respect to co-invariant cone family with rank-k, which present a (quasi)-equivalence relation between the measurably co-invariant cone family and the measurably dominated splitting of X. Moreover, such (quasi)-equivalence relation turns out to be an equivalence relation whenever (i) k=1; or (ii) in the frame of the Multiplicative Ergodic Theorem with certain Lyapunov exponent being greater than the negative infinity. For the second case, we thoroughly investigated the relations between the Lyapunov exponents, the co-invariant cone family and the measurably dominated splitting for linear random dynamical systems in X.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.