Abstract

Most aerosol particles, such as sulphate and sea-salt particles, mainly scatter solar radiation, whilst soot (in the form of elemental carbon or “black” carbon, BC) in addition leads to considerable absorption. This scattering and absorption by the aerosol particles constitute the so-called direct aerosol effect. In this paper, we present results from a study of possible direct effects of tropospheric BC and sulphate aerosols, with an emphasis on BC aerosols, along a line from North Africa through Europe into the Arctic. Radiative budgets in a cloud-free atmosphere are estimated. Based on model-calculated distributions of BC and sulphate (provided by Seland and Iversen, 1998) and assumed size distributions of the background aerosol, new size distributions are obtained by adding natural, biomass burning and fossil fuel contributions to the background aerosol. Added nucleation mode particles are assumed externally mixed, whereas added accumulation mode BC and sulphate is internally mixed with the background according to condensational growth and Brownian coagulation theory. Humidity effects are taken into account by use of the Köhler equation. Mie calculations provide the resulting optical parameters, and the forcing is finally estimated by use of a radiative transfer model. A reference run and a series of eleven test-runs are performed to investigate the sensitivity of various assumptions on the contribution to upward TOA irradiance from BC and non-sea-salt sulphate. The tests suggest a high sensitivity to presence of BC and to particle swelling due to humidity. The sensitivity to assumed distribution of BC on particle size is more moderate. The same is true for the vertical resolution and the number concentration of the background aerosol. The effect of mixing organic carbon (OC) internally with biomass burning BC nucleation mode particles is characterized as moderate. The role of OC is, however, still uncertain. The same holds true for the optical thickness of the background atmosphere, for which we found a high sensitivity in this study. Other assumptions that were investigated had only small effects on the forcing. For the reference run we find a minimum in the aerosol forcing of approximately −5 W m -2 near the most polluted areas in Europe, and a maximum of approximately 2 W m -2 over North Africa. A warming effect is also found for the Arctic region, with forcing values up to 0.4 W m -2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.