Abstract

It is shown that every $n$-vertex graph that admits a 2-bend RAC drawing in the plane, where the edges are polylines with two bends per edge and any pair of edges can only cross at a right angle, has at most $20n-24$ edges for $n\geq 3$. This improves upon the previous upper bound of $74.2n$; this is the first improvement in more than 12 years. A crucial ingredient of the proof is an upper bound on the size of plane multigraphs with polyline edges in which the first and last segments are either parallel or orthogonal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.