Abstract

The notion of $r$-stackedness for simplicial polytopes was introduced by McMullen and Walkup in 1971 as a generalization of stacked polytopes. In this paper, we define the $r$-stackedness for triangulated homology manifolds and study their basic properties. In addition, we find a new necessary condition for face vectors of triangulated manifolds when all the vertex links are polytopal. Généralisant les polytopes simpliciaux empilés, McMullen et Walkup ont introduit en 1971 la notion de $r$-empilement pour les polytopes simpliciaux. Dans cet article, nous définissons la notion de $r$-empilement pour les variétés homologiques simpliciales et étudions ses propriétés élémentaires. En outre, nous donnons une nouvelle condition pour les $f$-vecteurs des variétés simpliciales lorsque tous les sommets ont un lien polytopal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.