Abstract
The problem of isometry for threshold-based sampling such as integrate-and-fire (IF) or send-on-delta (SOD) is addressed. While for uniform sampling the Parseval theorem provides isometry and makes the Euclidean metric canonical, there is no analogy for threshold-based sampling. The relaxation of the isometric postulate to quasi-isometry, however, allows the discovery of the underlying metric structure of threshold-based sampling. This paper characterizes this metric structure making Hermann Weyl's discrepancy measure canonical for threshold-based sampling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.