Abstract

We discuss possible quantum mechanical aspects of MicroTubules (MT), based on recent developments in quantum physics. We focus on potential mechanisms for "energy-loss-free" transport along the microtubules, which could be considered as realizations of Fröhlich's ideas on the rôle of solitons for superconductivity and/or biological matter. In particular, by representing the MT arrangements as cavities, we present a novel scenario on the formation of macroscopic (or mesoscopic) quantum-coherent states, as a result of the (quantum-electromagnetic) interactions of the MT dimers with the surrounding molecules of the ordered water in the interior of the MT cylinders. Such states decohere due to dissipation through the walls of the MT. Transfer of energy without dissipation, due to such coherent modes, could occur only if the decoherence time is larger than the average time scale required for energy transfer across the cells. We present some generic order of magnitude estimates or the decoherence time in a typical model for MT dynamics. Our conclusion is that the quantum coherent states play a rôle in energy transfer if the dissipation through the walls of the MT cavities is fairly suppressed, corresponding to damping time scales Tr≥10-4-10-5 sec, for moderately large MT networks. We suggest specific experiments to test the above-conjectured quantum nature of the microtubular arrangements inside the cell. These experiments are similar in nature to those in atomic physics, used in the detection of the Rabi-Vacuum coupling between coherent cavity modes and atoms. Our conjecture is that a similar Rabi-Vacuum-splitting phenomenon occurs in the absorption (or emission) spectra of the MT dimers, which would constitute a manifestation of the dimer coupling with the coherent modes in the ordered-water environment (dipole quanta), which emerge due to "super-radiance".

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.