Abstract
Quantum machine learning seeks to exploit the underlying nature of a quantum computer to enhance machine learning techniques. A particular framework uses the quantum property of superposition to store sets of parameters, thereby creating an ensemble of quantum classifiers that may be computed in parallel. The idea stems from classical ensemble methods where one attempts to build a stronger model by averaging the results from many different models. In this work, we demonstrate that a specific implementation of the quantum ensemble of quantum classifiers, called the accuracy-weighted quantum ensemble, can be fully dequantised. On the other hand, the general quantum ensemble framework is shown to contain the well-known Deutsch-Jozsa algorithm that notably provides a quantum speedup and creates the potential for a useful quantum ensemble to harness this computational advantage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.