Abstract

The effective action in gauge theories is known to depend on a choice of gauge fixing conditions. This dependence is such that any change of gauge conditions is equivalent to a field redefinition in the effective action. In this sense, the quantum deformation of conformal symmetry in the N=4 super-Yang–Mills theory, which was computed in 't Hooft gauge in hep-th/9808039 and hep-th/0203236, is gauge dependent. The deformation is an intrinsic property of the theory in that it cannot be eliminated by a local choice of gauge (although we sketch a field redefinition induced by a nonlocal gauge which, on the Coulomb branch of the theory, converts the one-loop quantum-corrected conformal transformations to the classical ones). We explicitly compute the deformed conformal symmetry in Rξ gauge. The conformal transformation law of the gauge field turns out to be ξ-independent. We construct the scalar field redefinition which relates the 't Hooft and Rξ gauge results. A unique feature of 't Hooft gauge is that it makes it possible to consistently truncate the one-loop conformal deformation to the terms of first order in derivatives of the fields such that the corresponding transformations form a field realization of the conformal algebra.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call