Abstract

We define a class of stochastic processes based on evolutions and measurements of quantum systems, and consider the complexity of predicting their long term behavior. It is shown that a very general class of decision problems regarding these stochastic processes can be efficiently solved classically in the space-bounded case. The following corollaries are implied by our main result for any space-constructible space bound s satisfying s(n)=/spl Omega/(log n): (i) any space O(s) uniform family of quantum circuit acting on s qubits and consisting of unitary gates and measurement gates defined in a typical way by matrices of algebraic numbers can be simulated by an unbounded error space O(s) ordinary (i.e., fair-coin flipping) probabilistic Turing machine, and hence by space O(s) uniform classical (deterministic) circuits of depth O(s/sup 2/) and size 2/sup 0/(s); (2) any quantum Turing machine running in space s, having arbitrary algebraic transition amplitudes, allowing unrestricted measurements during its computation, and having no restrictions on running time can be simulated by a space O(s) ordinary probabilistic Turing machine in the unbounded error setting. We also obtain the following classical result: any unbounded error probabilistic Turing machine running in space s that allows algebraic probabilities and algebraic cut-point can be simulated by a space O(s) ordinarily probabilistic Turing machine with cut-point 1/2. Our technique for handling algebraic numbers in the above simulations may be of independent interest. It is shown that any real algebraic number can be accurately approximated by a ratio of GapL functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call