Abstract

The purpose of this paper is to demonstrate that a unified study of quantization and delay effects in nonlinear control systems is possible by merging the quantized feedback control methodology recently developed by the author and the small-gain approach to the analysis of functional differential equations with disturbances proposed earlier by Teel. We prove that under the action of a robustly stabilizing feedback controller in the presence of quantization and sufficiently small delays, solutions of the closed-loop system starting in a given region remain bounded and eventually enter a smaller region. We present several versions of this result and show how it enables global asymptotic stabilization via a dynamic quantization strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.