Abstract
In this article we determine bounds on the maximal order of vanishing for eigenfunctions of a generalized Dirichlet-to-Neumann map (which is associated with fractional Schr\"odinger equations) on a compact, smooth Riemannian manifold, $(M,g)$, without boundary. Moreover, with only slight modifications these results generalize to equations with $C^1$ potentials. Here Carleman estimates are a key tool. These yield a quantitative three balls inequality which implies quantitative bulk and boundary doubling estimates and hence leads to the control of the maximal order of vanishing. Using the boundary doubling property, we prove upper bounds on the $\mathcal{H}^{n-1}$-measure of nodal domains of eigenfunctions of the generalized Dirichlet-to-Neumann map on analytic manifolds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.