Abstract

A Quantified Linear Implication (QLI) is an inclusion query over two polyhedral sets, with a quantifier string that specifies which variables are existentially quantified and which are universally quantified. Equivalently, it can be viewed as a quantified implication of two systems of linear inequalities. In this paper, we provide a 2-person game semantics for the QLI problem, which allows us to explore the computational complexities of several of its classes. More specifically, we prove that the decision problem for QLIs with an arbitrary number of quantifier alternations is PSPACE-hard. Furthermore, we explore the computational complexities of several classes of 0, 1, and 2-quantifier alternation QLIs. We observed that some classes are decidable in polynomial time, some are NP-complete, some are coNP-hard and some are $\boldsymbol{\Pi}_{\textbf 2}^{\textbf P}$ -hard. We also establish the hardness of QLIs with 2 or more quantifier alternations with respect to the first quantifier in the quantifier string and the number of quantifier alternations. All the proofs that we provide for polynomially solvable problems are constructive, i.e., polynomial-time decision algorithms are devised that utilize well-known procedures. QLIs can be utilized as powerful modelling tools for real-life applications. Such applications include reactive systems, real-time schedulers, and static program analyzers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.