Abstract

Systems described by parabolic partial differential equations are formulated as ordinary differential equations in a Hilbert space. Quadratic cost criteria are then formulated as inner products on this Hilbert space. Existence of an optimal control is proved both in the case where the system operator is "coercive" and in the case where the system operator is the infinitesimal generator of a semigroup of operators. The optimal control is given by a linear state feedback law in which the feedback operator is shown to be the bounded positive self-adjoint solution of a nonlinear operator equation of the Riccati type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.