Abstract

It is shown that every type {22} vacuum solution of Einstein's equations admits a quadratic first integral of the null geodesic equations (conformal Killing tensor of valence 2), which is independent of the metric and of any Killing vectors arising from symmetries. In particular, the charged Kerr solution (with or without cosmological constant) is shown to admit a Killing tensor of valence 2. The Killing tensor, together with the metric and the two Killing vectors, provides a method of explicitly integrating the geodesics of the (charged) Kerr solution, thus shedding some light on a result due to Carter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.