Abstract

Stochastic matrices and positive maps in matrix algebras have proved to be very important tools for analysing classical and quantum systems. In particular they represent a natural set of transformations for classical and quantum states, respectively. Here we introduce the notion of pseudo-stochastic matrices and consider their semigroup property. Unlike stochastic matrices, pseudo-stochastic matrices are permitted to have matrix elements which are negative while respecting the requirement that the sum of the elements of each column is one. They also allow for convex combinations, and carry a Lie group structure which permits the introduction of Lie algebra generators. The quantum analog of a pseudo-stochastic matrix exists and is called a pseudo-positive map. They have the property of transforming a subset of quantum states (characterized by maximal purity or minimal von Neumann entropy requirements) into quantum states. Examples of qubit dynamics connected with ‘diamond’ sets of stochastic matrices and pseudo-positive maps are dealt with.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.