Abstract

Let $G$ be a paratopological group.Following F.~Lin and S.~Lin, we say that the group $G$ is pseudobounded,if for any neighborhood $U$ of the identity of $G$,there exists a natural number $n$ such that $U^n=G$.The group $G$ is $\omega$-pseudobounded,if for any neighborhood $U$ of the identity of $G$, the group $G$ is aunion of sets $U^n$, where $n$ is a natural number.The group $G$ is premeager, if $G\ne N^n$ for any nowhere dense subset $N$ of$G$ and any positive integer $n$.In this paper we investigate relations between the above classes of groups andanswer some questions posed by F. Lin, S. Lin, and S\'anchez.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.