Abstract

In this paper we offer criteria for property (B) and additional asymptotic behavior of solutions of the $n$-th order delay differential equations \begin{equation*} \big (r(t)\big [x^{(n-1)}(t)\big ]^{\gamma }\big )^{\prime }=q(t)f\big (x(\tau (t))\big )\,. \end{equation*} Obtained results essentially use new comparison theorems, that permit to reduce the problem of the oscillation of the n-th order equation to the the oscillation of a set of certain the first order equations. So that established comparison principles essentially simplify the examination of studied equations. Both cases $\int ^{\infty } r^{-1/\gamma }(t)\,{t}=\infty $ and $\int ^{\infty } r^{-1/\gamma }(t)\,{t}<\infty $ are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.