Abstract
More than three decades ago, Boyd and Balakrishnan established a regularity result for the two-norm of a transfer function at maximizers. Their result extends easily to the statement that the maximum eigenvalue of a univariate real analytic Hermitian matrix family is twice continuously differentiable, with Lipschitz second derivative, at all local maximizers, a property that is useful in several applications that we describe. We also investigate whether this smoothness property extends to max functions more generally. We show that the pointwise maximum of a finite set of q-times continuously differentiable univariate functions must have zero derivative at a maximizer for q=1, but arbitrarily close to the maximizer, the derivative may not be defined, even when q=3 and the maximizer is isolated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.