Abstract
Computing the partition function and the marginals of a global probability distribution are two important issues in any probabilistic inference problem. In a previous work, we presented sub-tree based upper and lower bounds on the partition function of a given probabilistic inference problem. Using the entropies of the sub-trees we proved an inequality that compares the lower bounds obtained from different sub-trees. In this paper we investigate the properties of one specific lower bound, namely the lower bound computed by the minimum entropy sub-tree. We also investigate the relationship between the minimum entropy sub-tree and the sub-tree that gives the best lower bound.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.