Abstract

AbstractAll known Banach spaces have an infinite-dimensional separable quotient and so do all nonnormable Fréchet spaces, although the general question for Banach spaces is still open. A properly separable topological vector space is defined, in such a way that separable and properly separable are equivalent for an infinite-dimensional complete metrisable space. The main result of this paper is that the strict inductive limit of a sequence of non-normable Fréchet spaces has a properly separable quotient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.