Abstract

AbstractThe aim of this paper is to extend some notions of proper minimality from vector optimization to set optimization. In particular, we focus our attention on the concepts of Henig and Geoffrion proper minimality, which are well-known in vector optimization. We introduce a generalization of both of them in set optimization with finite dimensional spaces, by considering also a special class of polyhedral ordering cone. In this framework, we prove that these two notions are equivalent, as it happens in the vector optimization context, where this property is well-known. Then, we study a characterization of these proper minimal points through nonlinear scalarization, without considering convexity hypotheses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.