Abstract
Let v be a real valuation of a field K with valuation ring Rv. Let K(θ) be a finite separable extension of K with θ integral over Rv and F(x) be the minimal polynomial of θ over K. Using Newton polygons and residually transcendental prolongations of v to a simple transcendental extension K(x) of K together with liftings with respect to such prolongations, we describe a method to determine all prolongations of v to K(θ) along with their residual degrees and ramification indices over v. The problem is classical but our approach uses new ideas. The paper gives an analogue of Ore’s Theorem when the base field is an arbitrary rank-1 valued field and extends the main result of [S.D. Cohen, A. Movahhedi, A. Salinier, Factorization over local fields and the irreducibility of generalized difference polynomials, Mathematika 47 (2000) 173–196].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.