Abstract

Model-order reduction is a key technique to do fast simulation of interconnect networks. Among many model-order reduction algorithms, those based on projection methods work quite well. In this paper, we review the projection-based algorithms in two categories. The first one is the coefficient matching algorithms. We generalize the Krylov subspace method on moment matching at a single point, to multipoint moment-matching methods with matching points located anywhere in the closed right-hand side (RHS) of the complex plane, and we provide algorithms matching the coefficients of series expansion-based on orthonormal polynomials and generalized orthonormal basis functions in Hilbert and Hardy space. The second category belongs to the grammian-based algorithms, where we provide efficient algorithm for the computation of grammians and new approximate grammian-based approaches. We summarize some important properties of projection-based algorithms so that they may be used more flexibly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call