Abstract
A representation for products of finite nonnegative matrices is given in terms of products of stochastic matrices and as a result Markov chain arguments are used to derive ratio limit properties. In particular, we obtain necessary and sufficient conditions for weak ergodicity and give a probabilistic proof of the Coale-Lopez theorem. In the general case, there are several sequences of sets of partitions of the state space corresponding to an associated nonhomogeneous Markov chain which lead to a number of ratio product limits. Asymptotic column proportionality, characteristic of weak ergodicity, may occur only inside each sequence of sets with one possible exception.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.