Abstract
Abstract Measurement of the concentration variation of a grain boundary segregant near a grain boundary has been chosen as a system in which to investigate the spatial resolution attainable by X-ray microanalysis in the scanning transmission electron microscope (STEM). In this paper extensive experimental work on Fe-doped MgO is compared with a theoretical model which examines the effect of incident probe size and electron beam broadening in the sample on concentration profiles measured using standard analysis of X-ray data. It is shown that the spatial extent of segregation can be determined to a resolution dependent on the incident probe size. The magnitude of the peak concentrations determined at the boundary are, however, strongly dependent on beam broadening and hence foil thickness. Comparing experimental and calculated results suggests that the extent of beam broadening may not be as great as current theoretical estimates would predict.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.