Abstract

The paper investigates process–structure–property interconnection in anti-phase synchronised twin-wire gas metal arc welded low carbon steel samples wherein process variation is achieved by using similar and dissimilar currents and diameters at lead and trail wires. Scanning electron microscopy and microhardness measurements are used as characterisation techniques. The investigation offers new observations on heat generation and distribution in twin-wire welding that affect weld bead and microstructure formation due to changes in arc phenomenon and molten metal flow in weld pool. Use of dissimilar currents facilitates effective utilisation of heat. The two-stage arcing in twin-wire welding facilitates slow heating and cooling that leads to weld metal and heat affected zone softening. A combination of polygonal ferrite, pearlite and bainite with varying compositions is observed across the weldment. A higher current value and larger wire diameter at the lead wire leads to coarsening of the grains thereby reducing the hardness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.