Abstract
We investigate asymptotics of probabilities of moderate deviations and their logarithms for an array of row-wise independent random variables with finite variations and finite one-sided moments of order p > 2. The range of the zone of normal convergence is calculated in terms of Lyapunov ratios constructed from the positive parts of the random variables. Bounds for probabilities of moderate deviations are also derived in the case where the normal convergence fails. Bibliography: 16 titles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.