Abstract

The influence of swelling on prismatic and bending bifurcation modes of inflated thin-walled cylinders under axial loading is examined. The bifurcation criteria for a membrane cylinder subjected to combined axial loading, internal pressure, and swelling is provided. We consider orthotropic materials with two preferred directions which are mechanically equivalent and symmetrically disposed. The mechanical behavior of the matrix is described by a swellable isotropic model. The isotropic material is augmented with two functions that are equal, each one of them accounting for the existence of a unidirectional reinforcement. Two reinforcing models that depend only on the stretch in the fiber direction are considered: the so-called standard reinforcing model and an exponential one. The analysis of bifurcation modes for these models under the conditions at hand may establish the connection with modeling of the normal and diseased aorta in arterial wall tissue. The effects of the axial stretch, the strength of the fiber reinforcement and the fiber winding angle on the onset of prismatic and bending bifurcations are investigated. It is shown that for membranes without fibers, prismatic bifurcation is not feasible. On the other hand, bending bifurcation is more likely to occur for swollen cylinders. However, for a particular model of fiber-reinforced membranes, the standard model, there exists a domain of deformation values together with material constant values that may trigger prismatic bifurcation. The exponential model does not allow prismatic bifurcations. Both models allow bending bifurcation and may or may not trigger it depending on the deformation together with material parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.