Abstract
This paper deals with multi-criteria decision making (MCDM) problems with multiple priorities, in which priority weights associated with the lower priority criteria are related to the satisfactions of the higher priority criteria. Firstly, we propose a prioritized weighted aggregation operator based on ordered weighted averaging (OWA) operator and triangular norms (t-norms). To preserve the tradeoffs among the criteria in the same priority level, we suggest that the degree of satisfaction regarding each priority level is viewed as a pseudo criterion. On the other hand, t-norms are used to model the priority relationships between the criteria in different priority levels. In particular, we show that strict Archimedean t-norms perform better in inducing priority weights. As Hamacher family of t-norms provide a wide class of strict Archimedean t-norms ranging from the product to weakest t-norm, Hamacher parameterized t-norms are used to induce the priority weight for each priority level. Secondly, considering decision maker (DM)’s requirement toward higher priority levels, a benchmark based approach is proposed to induce priority weight for each priority level. In particular, Łukasiewicz implication is used to compute benchmark achievement for crisp requirements; target-oriented decision analysis is utilized to obtain the benchmark achievement for fuzzy requirements. Finally, some numerical examples are used to illustrate the proposed prioritized aggregation technique as well as to compare with previous research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.